Monitoring for Chemicals of Emerging Concern (CECs) in California's Aquatic Ecosystems

Keith Maruya
Southern California Coastal Water Research Project

California Water Quality Monitoring Collaboration Network February 14, 2013

ORIGIN OF THE ECOSYSTEMS PANEL

- Regulatory requirements need to be based on best available peer-reviewed science
 - established and enforced by State & Regional Water Boards
- State of knowledge regarding CECs is incomplete
- Advisory panel needed to guide future actions relating to CECs in
 - recycled water (original Panel convened in 2009)
 - aquatic ecosystems (this effort)
- Respond to questions most relevant to Water Boards

PANEL SELECTION PROCESS

- SCCWRP solicited input from stakeholders to guide panel member selection
- All members of Recycled Water Panel retained
- Expertise in marine resources/antibiotic resistance added
- Ecosystems Panel convened in January 2010

PROCESS & PHILOSOPHY

- Open and transparent process
 - Panel member selection
 - Meeting agendas & information exchange
 - Comments and feedback
- Stakeholder advisory group with diverse interests
 - Public interest groups
 - Wastewaster dischargers and stormwater permittees
 - State regulatory and resource agencies
- Public commentary & panel report out at each meeting
- Recommendations based on best available science

STAKEHOLDER ADVISORS

- Jim Colston (Tri-TAC)
- Chris Crompton (CA Stormwater Quality Association)
- Mark Gold (Heal the Bay)
- Amber Mace (CA Ocean Science Trust)
- Rick Moss* (SWRCB)
- Linda Sheehan (CA Coastkeeper Alliance)

^{*} succeeded by G. Dickenson, M. Emanuel

PANEL MEMBERS

- Dr. Paul Anderson
 - Human Health Toxicologist
 - Arcadis US
- Dr. Nancy Denslow
 - Biochemist
 - University of Florida
- Dr. Jörg Drewes
 - Civil Engineer
 - Colorado School of Mines

- Dr. Adam Olivieri
 - Risk Assessor
 - EOA Incorporated
- Dr. Daniel Schlenk (Chair)
 - Environmental Toxicologist
 - UC Riverside
- Dr. Shane Snyder
 - Analytical Chemist
 - University of Arizona
- Dr. Geoff Scott
 - Marine Resources
 - NOAA

HOW DO WE MONITOR FOR CECs?

- What are the relative contributions from stormwater & WWTP effluent?
- What are the appropriate CECs to be monitored, including analytical methods and detection limits?
- What is the fate of CECs in WWTPs, storm & receiving waters?
- What approaches should be used to assess biological effects?
- What is the appropriate monitoring design?
- What levels of CECs should trigger additional action? What range of actions should be considered?

PANEL DELIVERED FOUR PRODUCTS

- Decision making "risk-based" framework
 - A tool to prioritize CECs now and into the future
- Application of framework to discharge scenarios of interest
 - Initial list of CECs to monitor in water, sediment, biota
- Monitoring recommendations and interpretation
 - How, where and when to monitor; how to respond to results
 - A process that can adapt to changing science & chemical use
- Future recommended activities
 - Develop better monitoring tools to improve & refine the process

RISK-BASED SCREENING FRAMEWORK

- Step 1: measure or predict occurrence (MEC or PEC)
 - Provided through investigative monitoring (e.g. regional, special studies)

- Step 2: determine concentration that is protective of resource (aka "monitoring trigger level" or MTL)
 - Published information on no/low observable effects concentrations

- Step 3: calculate "Monitoring Trigger Quotient" (MTQ)
 = MEC (or PEC) / MTL
 - If MTQ < 1, no concern</p>
 - If MTQ \geq 1, add to candidate list

DISCHARGE SCENARIOS

Effluent dominated inland waterway

- Low flow (dry weather) conditions
- No dilution of WWTP effluent

Coastal embayment

- WWTP effluent and stormwater discharge
- 10 fold dilution of source input

Offshore ocean discharge

- Large WWTP outfalls in deeper water
- 100 fold dilution of WWTP effluent

HOW THE FRAMEWORK WAS APPLIED

- Panel considered chemicals for which both occurrence and toxicity data was available
 - Priority on those with known low level effects and occurrence in CA systems
- Panel considered both effluent and receiving water monitoring data
 - Maximum concentrations to be conservative
- Panel focused on non-traditional effects
 - Many CECs are suspected "endocrine disrupters" at sub-lethal concentrations
- Robust analytical methods must be available
 - Survey of commercial services industry

CECs IN WATER*

Pesticides

bifenthrin, permethrin, chlorpyrifos

Consumer products

bisphenol A, diclofenac, galaxolide, ibuprofen

Natural hormones

17b-estradiol, estrone

Antibiotics

triclosan (River scenario only)

* River & Bay scenarios only

CECs IN SEDIMENT AND TISSUE

Sediments (Bay & Ocean scenarios)

- Plasticizers (bis-2-ethylhexyl, butylbenzyl phthalates)
- Flame retardants (PBDE-47, -99)
- Detergents (4-nonylphenol)
- Pyrethroids (bifenthrin, permethrin) Bays only

Biological tissue (All Scenarios)

- Polybrominated diphenyl ethers (PBDEs)
- Perfluorinated chemicals (e.g. PFOS)

ADAPTIVE MONITORING STRATEGY INCLUDES "OFF-RAMPS"...

High concern – control (all controllable) sources

Elevated concern – confirm levels; expand monitoring (ID sources); refine risk assessment; control (easy) sources

Moderate concern – continue monitoring to ensure concentrations are not increasing

Little/No concern – Discontinue monitoring

...AND "ON-RAMPS"

- Panel recommended investigative monitoring and special studies for "data poor" CECs
 - Newly developed and/or registered drugs, pesticides and flame retardants
- Panel recommended development of modeling tools to prescreen for problematic CECs
 - Consider production, usage, fate and potential for toxicity
- Use Panel's assessment framework to determine if CECs warrant inclusion in future monitoring ("On-Ramp")
- Incorporate new information and revisit recommendations every 3-5 years
 - Infuse the latest science and update CEC lists and tools

DEVELOP BIOLOGICAL SCREENING TOOLS

Targets impact to resources

- more relevant than simple exposure
- different types of damage are targeted

Greater efficiency

- less time & money than exhaustively analyzing countless chemicals
- works for priority pollutants & CECs

In vitro bioassays to screen for CECs in recycled water

- commercially available technology
- SWRCB Contract 10-096-250
- results due in 2014

MOVING FORWARD

CECs are a moving target

- Incorporate better monitoring and assessment tools
- gather necessary data to assess high priority CECs
- revisit and revise target CEC list periodically

Develop bioanalytical screening methods and establish linkages to high order effects

- Integrates exposure and effects of known and unknown chemicals
- Incorporate into a more comprehensive, tiered monitoring approach

Develop a statewide CEC Monitoring Plan

- Includes pilot and special studies
- 12 month effort, due Feb 2014

A NEW CHEMICAL MONITORING APPROACH

